
CS1
V2.0

06/12/2022 1Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

CS1
V2.1

06/12/2022 2Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Motivation

Shifting from Teacher-centered to Student-centered learning

Identifying variation within the student cohort

Implementing programming exercises to foster theory

Increasing focus on imperative programming

06/12/2022 3Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Introductory Programming

166 Students
15 ECTs
7 Weekly assignments
2 Assignments
3 Tests
1 Four-week project
(Objects-first with Java)

06/12/2022 4Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Introductory Programming

Stakeholders question students basic imperative
competencies.

Are they capable of composing basic constructs?
[Nicolajsen, S. M., Understanding Programming Languages as an Advanced Beginner.]

06/12/2022 5Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Introductory Programming
Increase opportunities of learn-by-doing
(Shifting from Teacher-centered to Student-centered learning)

Understand student diversity in terms of experience
(Identifying variation within the student cohort)

Systematically design exercises to strengthen understanding of PL constructs
Increasing focus on imperative programming

06/12/2022 6Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Shifting from Teacher-centered to
Student-centered learning

Lectures contain multiple (different) techniques and theory.
(TA, TB , … , Tn)

Labs (or exercises) following iterates these.
(EA1-X, EB1-Y , … , En-Z)

06/12/2022 7Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Shifting from Teacher-centered to
Student-centered learning

06/12/2022 8Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

TA
TB
…

EA1-n
TB1-n

…

TA
EA1 … EAn

TB
EB1 … EBn

Shifting from Teacher-centered to
Student-centered learning

06/12/2022 9Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Shifting from Teacher-centered to
Student-centered learning

06/12/2022 10Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

while
EA1 … EAn

for
EB1 … EBn

Shifting from Teacher-centered to
Student-centered learning (in practice)

06/12/2022 11Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

TA
EA1 EA2()

()

TB
EB1 EB2

EAB1-n

Typically 1-2 exercises
Alone and in combination

Use most fitting
Or combine

What are the effects?

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 12

06/12/2022 13Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

*What do you feel about the format compared to other courses? (N=50)

Useful
2%

Learn by doing
2% Different time to completion

2%

Long duration
2%

More readable exercises
2%

Confrontation
32%

Fast testing
5%Gives breaks

13%

Easier to learn
26%

Prefer
exercises

4%

Increases interest
2%

Good with async
2%

Missing time
2%

Speed varies
2%

Difficult to
understand

2%

06/12/2022 14Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

* Anything about the teaching you find particular good (please expand)? (N=79)

Format
60%

Teachers
7%

Examples
1%

Exercises
4%

Tas
22%

accessibility
4%

shift in teachers
1% everything

1%

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 15

Sometimes yes, however, other times I feel like the teaching is
going too fast.

Yes!! – There is relatively many successes. The exercises during
teaching helps a lot with understanding the concepts. It is super
nice that there is so much focus on letting the students getting
"hands-on". A little like learning a music instrument, it makes
sense that you do not have a teacher who runs theoretical one-
way communication to their students but that the teacher allows
their students to try things in practice before moving on with more
theory.

06/12/2022 16Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Overall, I benefited from the course

The course was organized in a way that helped me learn

5.61

5.57

Identifying variation within the student
cohort
Student experience impacts:
- Performance
- Self-efficacy (also of others)
- Retention

And potentially course design.

06/12/2022 17Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

06/12/2022 18Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

I have made programs of 50-250 lines
of self-written code in an all purpose

programming language, e.g., Java,
Python, Javascript, C#, C, Pascal, Basic;

55

I have made programs with 10-50 lines
of self-written code in "real"

languages, scripting languages,
Scratch, AppMaker, or the likes; 23

I had no programming experience (Use
of Excel or HTML on websites do not

contribute towards this); 53

I have made programs with more than
250 lines of self-written code or more
than 100 lines in multiple languages;

32

I have an AP degree in Computer
Science (or similar); 3

06/12/2022 19Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Affecting CS1 courses…

What is the focus of CS1?
[Misconceptions reconceived: A constructivist analysis of
knowledge in transition, Smith III, J. P., DiSessa, A. A., and
Roschelle, J.]

Extracurricular or mandatory?

06/12/2022 20Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Implementing programming exercises to
foster theory
Systematically implement programming exercises.
Focusing on Tasks, Techniques, Technology, and Theory

06/12/2022 21Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Implementing programming exercises to
foster theory

06/12/2022 22Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Implementing programming exercises to
foster theory

1) Introduce (part of) technique
2) Task to learn-by-doing

3) Attempt technology generation through epistemological obstacles.
4) Generate theory by institutionalising differences between techniques.

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 23

Repeat
until technique is covered
for all related techniques.

Implementing programming exercises to
foster theory (in practice)

1) Introduce Sets
2) Task in using Sets

3) Set and Map "choice-and-implement" exercises.
4) Outline benefits and downsides of structures, and use cases.

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 24

Repeat
For reading, modification
For Sets and Maps.

Implementing programming exercises to
foster theory
Current (anecdotal) observations from this exercise design:

1) Students are more capable of keyword identification
[Nielsen, S. K., Obstacles and strategies of Novice programmers]

2) Students still lack strategies for translating from problem to
code.
[Nielsen, S. K., Obstacles and strategies of Novice programmers]

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 25

Lack of strategies

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 26

P0 S*

Lack of strategies

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 27

S*P0

Lack of strategies

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 28

P0 P1 P2 S*

Lack of strategies

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 29

P0 P1 P2 S*
Problem formulation

Which constructs should I use?

How do I put things together?

Patterns I have seen before, I need to combine …

The word 'if' is used, I need to iterate …

A problem defined far from programming instructions

Increasing focus on imperative
programming

06/12/2022 30Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Increasing focus on imperative
programming

06/12/2022 31Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Current (anecdotal) observations from this change:
(And based on results of mandatory tests and exams)

1) Students are better at understanding program flow

2) Some still lack basic imperative (algorithmic) understanding

Are the students learning to code?

06/12/2022 32Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

Yes
95%

No
3%

Maybe
2%

*Do you feel like you are learning to code? (N=98)

Are the students learning to code?

06/12/2022 33Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen

(N0=125, N1=152, N2=120)

Takeaways & Future work

- The mixed format encourages confrontation and training
- Obtaining data on student experience is essential for design
- We need to train strategies for programming more.

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 34

Questions?

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 35

Not approved for exam

N 28
1 8
2 4
3 8
4 6
5 2

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 36

Recording use (hours spent)

06/12/2022 Changing Introductory Programming - Sebastian Nicolajsen @ IT University of Copenhagen 37

